Three Dimensional Point Cloud Compression and Decompression Using Polynomials of Degree One

Author:

Imdad Ulfat,Asif Muhammad,Ahmad Mirza,Sohaib OsamaORCID,Hanif Muhammad,Chaudary Muhammad

Abstract

The availability of cheap depth range sensors has increased the use of an enormous amount of 3D information in hand-held and head-mounted devices. This has directed a large research community to optimize point cloud storage requirements by preserving the original structure of data with an acceptable attenuation rate. Point cloud compression algorithms were developed to occupy less storage space by focusing on features such as color, texture, and geometric information. In this work, we propose a novel lossy point cloud compression and decompression algorithm that optimizes storage space requirements by preserving geometric information of the scene. Segmentation is performed by using a region growing segmentation algorithm. The points under the boundary of the surfaces are discarded that can be recovered through the polynomial equations of degree one in the decompression phase. We have compared the proposed technique with existing techniques using publicly available datasets for indoor architectural scenes. The results show that the proposed novel technique outperformed all the techniques for compression rate and RMSE within an acceptable time scale.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3