Electrical Resistance Sensing of Epoxy Curing Using an Embedded Carbon Nanotube Yarn

Author:

Rodríguez-Uicab OmarORCID,Abot Jandro L.ORCID,Avilés Francis

Abstract

Curing effects were investigated by using the electrical response of a single carbon nanotube yarn (CNTY) embedded in an epoxy resin during the polymerization process. Two epoxy resins of different viscosities and curing temperatures were investigated, varying also the concentration of the curing agent. It is shown that the kinetics of resin curing can be followed by using the electrical response of an individual CNTY embedded in the resin. The electrical resistance of an embedded CNTY increased (~9%) after resin curing for an epoxy resin cured at 130 °C with viscosity of ~59 cP at the pouring/curing temperature (“Epon 862”), while it decreased (~ −9%) for a different epoxy cured at 60 °C, whose viscosity is about double at the corresponding curing temperature. Lowering the curing temperature from 60 °C to room temperature caused slower and smoother changes of electrical resistance over time and smaller (positive) residual resistance. Increasing the concentration of the curing agent caused a faster curing kinetics and, consequently, more abrupt changes of electrical resistance over time, with negative residual electrical resistance. Therefore, the resin viscosity and curing kinetics play a paramount role in the CNTY wicking, wetting and resin infiltration processes, which ultimately govern the electrical response of the CNTY immersed into epoxy.

Funder

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3