Distributed Fibre Optic Sensing (DFOS) for Deformation Assessment of Composite Collectors and Pipelines

Author:

Bednarz BartoszORCID,Popielski PawełORCID,Sieńko Rafał,Howiacki Tomasz,Bednarski Łukasz

Abstract

Due to the low costs of distributed optical fibre sensors (DFOS) and the possibility of their direct integration within layered composite members, DFOS technology has considerable potential in structural health monitoring of linear underground infrastructures. Often, it is challenging to truly simulate the actual ground conditions at all construction stages. Thus, reliable measurements are required to adjust the model and verify theoretical calculations. The article presents a new approach to monitor displacements and strains in Glass Fiber Reinforced Polymer (GFRP) collectors and pipelines using DFOS. The research verifies the effectiveness of the proposed monitoring solution for health monitoring of composite pipelines. Optical fibres were installed over the circumference of a composite tubular pipe, both on the internal and external surfaces, while loaded externally. Analysis of strain profiles allowed for calculating the actual displacements (shape) of the pipe within its cross-section plane using the Trapezoidal method. The accuracy of proposed approach was positively verified both with reference spot displacement transducer as well as numerical simulations using finite element method (FEM). DFOS could obtain a comprehensive view of structural deformations, including both strains and displacements under externally applied load. The knowledge gained during research will be ultimately used for renovating existing collectors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Whole-life costing in construction—A state of the art review;Kishk,2003

2. Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications;Bai,2013

3. State-of-the-Art of FRP and SHM Applications in Bridge Structures in Canada;Mufti;Compos. Res. J.,2008

4. Pultruded materials and structures: A review

5. Advances of FRP-based smart components and structures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3