Abstract
Link prediction in complex networks has attracted considerable attention from interdisciplinary research communities, due to its ubiquitous applications in biological networks, social networks, transportation networks, telecommunication networks, and, recently, knowledge graphs. Numerous studies utilized link prediction approaches in order sto find missing links or predict the likelihood of future links as well as employed for reconstruction networks, recommender systems, privacy control, etc. This work presents an extensive review of state-of-art methods and algorithms proposed on this subject and categorizes them into four main categories: similarity-based methods, probabilistic methods, relational models, and learning-based methods. Additionally, a collection of network data sets has been presented in this paper, which can be used in order to study link prediction. We conclude this study with a discussion of recent developments and future research directions.
Subject
General Economics, Econometrics and Finance
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献