Link Prediction in Dynamic Social Networks Combining Entropy, Causality, and a Graph Convolutional Network Model

Author:

Huang Xiaoli1ORCID,Li Jingyu1ORCID,Yuan Yumiao1ORCID

Affiliation:

1. School of Electrical Engineering and Electronic Information, Xihua University, Chengdu 610000, China

Abstract

Link prediction is recognized as a crucial means to analyze dynamic social networks, revealing the principles of social relationship evolution. However, the complex topology and temporal evolution characteristics of dynamic social networks pose significant research challenges. This study introduces an innovative fusion framework that incorporates entropy, causality, and a GCN model, focusing specifically on link prediction in dynamic social networks. Firstly, the framework preprocesses the raw data, extracting and recording timestamp information between interactions. It then introduces the concept of “Temporal Information Entropy (TIE)”, integrating it into the Node2Vec algorithm’s random walk to generate initial feature vectors for nodes in the graph. A causality analysis model is subsequently applied for secondary processing of the generated feature vectors. Following this, an equal dataset is constructed by adjusting the ratio of positive and negative samples. Lastly, a dedicated GCN model is used for model training. Through extensive experimentation in multiple real social networks, the framework proposed in this study demonstrated a better performance than other methods in key evaluation indicators such as precision, recall, F1 score, and accuracy. This study provides a fresh perspective for understanding and predicting link dynamics in social networks and has significant practical value.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3