Effects of Different Livestock Grazing on Foliar Fungal Diseases in an Alpine Grassland on the Qinghai–Tibet Plateau

Author:

Tian Zhen1,Li Wenjie1,Kou Yixin1,Dong Xin1,Liu Huining1,Yang Xiaoxia2,Dong Quanmin2ORCID,Chen Tao1

Affiliation:

1. State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou 730000, China

2. Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China

Abstract

In grassland ecosystems, the occurrence and transmission of foliar fungal diseases are largely dependent on grazing by large herbivores. However, whether herbivores that have different body sizes differentially impact foliar fungal diseases remains largely unexplored. Thus, we conducted an 8-year grazing experiment in an alpine grassland on the Qinghai–Tibet Plateau in China and tested how different types of livestock (sheep (Ovis aries), yak (Bos grunniens), or both)) affected foliar fungal diseases at the levels of both plant population and community. At the population level, grazing by a single species (yak or sheep) or mixed species (sheep and yak) significantly decreased the severity of eight leaf spot diseases. Similarly, at the community level, both single species (yak or sheep) and mixed grazing by both sheep and yak significantly decreased the community pathogen load. However, we did not find a significant difference in the community pathogen load among different types of livestock. These results suggest that grazing by large herbivores, independently of livestock type, consistently decreased the prevalence of foliar fungal diseases at both the plant population and community levels. We suggest that moderate grazing by sheep or yak is effective to control the occurrence of foliar fungal diseases in alpine grasslands. This study advances our knowledge of the interface between disease ecology, large herbivores, and grassland science.

Funder

Basic Research Innovation-Team Program of Qinghai Provincial Science Foundation

National Nature Science Foundation of China

National Key R & D Program of China

Start-up Funds of Introduced Talent in Lanzhou University

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3