Molecular and Physiological Mechanisms to Mitigate Abiotic Stress Conditions in Plants

Author:

Saharan Baljeet SinghORCID,Brar Basanti,Duhan Joginder Singh,Kumar RavinderORCID,Marwaha Sumnil,Rajput Vishnu D.ORCID,Minkina TatianaORCID

Abstract

Agriculture production faces many abiotic stresses, mainly drought, salinity, low and high temperature. These abiotic stresses inhibit plants’ genetic potential, which is the cause of huge reduction in crop productivity, decrease potent yields for important crop plants by more than 50% and imbalance agriculture’s sustainability. They lead to changes in the physio-morphological, molecular, and biochemical nature of the plants and change plants’ regular metabolism, which makes them a leading cause of losses in crop productivity. These changes in plant systems also help to mitigate abiotic stress conditions. To initiate the signal during stress conditions, sensor molecules of the plant perceive the stress signal from the outside and commence a signaling cascade to send a message and stimulate nuclear transcription factors to provoke specific gene expression. To mitigate the abiotic stress, plants contain several methods of avoidance, adaption, and acclimation. In addition to these, to manage stress conditions, plants possess several tolerance mechanisms which involve ion transporters, osmoprotectants, proteins, and other factors associated with transcriptional control, and signaling cascades are stimulated to offset abiotic stress-associated biochemical and molecular changes. Plant growth and survival depends on the ability to respond to the stress stimulus, produce the signal, and start suitable biochemical and physiological changes. Various important factors, such as the biochemical, physiological, and molecular mechanisms of plants, including the use of microbiomes and nanotechnology to combat abiotic stresses, are highlighted in this article.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3