Stochastic Unit Commitment and Optimal Power Trading Incorporating PV Uncertainty

Author:

Sediqi Mohammad MasihORCID,Lotfy Mohammed ElsayedORCID,Ibrahimi Abdul Matin,Senjyu TomonobuORCID,K Narayanan.ORCID

Abstract

This paper focuses on the optimal unit commitment (UC) scheme along with optimal power trading for the Northeast Power System (NEPS) of Afghanistan with a penetration of 230 MW of PV power energy. The NEPS is the biggest power system of Afghanistan fed from three main sources; 1. Afghanistan’s own power generation units (three thermal units and three hydro units); 2. imported power from Tajikistan; 3. imported power from Uzbekistan. PV power forecasting fluctuations have been handled by means of 50 scenarios generated by Latin-hypercube sampling (LHS) after getting the point solar radiation forecast through the neural network (NN) toolbox. To carry out the analysis, we consider three deterministic UC and two stochastic UC cases with a two-stage programming model that indicates the day-ahead UC as the first stage and the intra-day operation of the system as the second stage. A binary-real genetic algorithm is coded in MATLAB software to optimize the proposed cases in terms of thermal units’ operation costs, import power tariffs, as well as from the perspective of the system reliability risks expressed as the reserve and load not served costs. The results indicate that in the deterministic UC models, the risk of reserve and load curtailment does exist. The stochastic UC approaches including the optimal power trading are superior to the deterministic ones. Moreover, the scheduled UC costs and reserves are different from the actual ones.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Afghanistan electrical energy and trans-boundary water systems analyses: Challenges and opportunities

2. Global Alliance for Clean Cookstoveshttp://www.cleancookstoves.org/countries/asia/af ghanistan.html

3. Optimal economical sizing of grid-connected hybrid renewable energy system;Sediqi;J. Energy Power Eng.,2017

4. A simulated annealing algorithm for unit commitment

5. Reliability Constrained Unit Commitment Using Simulated Annealing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3