Impact of Time-of-Use Demand Response Program on Optimal Operation of Afghanistan Real Power System

Author:

Sediqi Mohammad MasihORCID,Nakadomari AkitoORCID,Mikhaylov AlexeyORCID,Krishnan NarayananORCID,Lotfy Mohammed ElsayedORCID,Yona Atsushi,Senjyu TomonobuORCID

Abstract

Like most developing countries, Afghanistan still employs the traditional philosophy of supplying all its load demands whenever they happen. However, to have a reliable and cost-effective system, the new approach proposes to keep the variations of demand at the lowest possible level. The power system infrastructure requires massive capital investment; demand response (DR) is one of the economic options for running the system according to the new scheme. DR has become the intention of many researchers in developed countries. However, very limited works have investigated the employment of appropriate DR programs for developing nations, particularly considering renewable energy sources (RESs). In this paper, as two-stage programming, the effect of the time-of-use demand response (TOU-DR) program on optimal operation of Afghanistan real power system in the presence of RESs and pumped hydropower storage (PHS) system in the day-ahead power market is analyzed. Using the concept of price elasticity, first, an economic model indicating the behaviour of customers involved in TOU-DR program is developed. A genetic algorithm (GA) coded in MATLAB software is used accordingly to schedule energy and reserve so that the total operation cost of the system is minimized. Two simulation cases are considered to verify the effectiveness of the suggested scheme. The first stage programming approach leads case 2 with TOU-DR program to 35 MW (811 MW − 776 MW), $16,235 ($528,825 − $512,590), and 64 MW reductions in the peak load, customer bill and peak to valley distance, respectively compared to case 1 without TOU-DR program. Also, the simulation results for stage 2 show that by employing the TOU-DR program, the system’s total cost can be reduced from $317,880 to $302,750, which indicates a significant reduction in thermal units’ operation cost, import power tariffs and reserve cost.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference43 articles.

1. Energy Consumption in Afghanistanhttps://www.worlddata.info/asia/afghanistan/energy-consumption.php

2. Map of the World—Maps of Afghanistanhttp://www.maps-of-the-world.net/maps-of-asia/maps-of-afghanistan/

3. Afghanistan: Climate Change Science Perspectives. National Environmental Protection Agency & UN Environmenthttps://postconflict.unep.ch/publications/Afghanistan/UNEP_AFG_CC_Science_perspectives.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3