The Impacts of Climate Variability on Crop Yields and Irrigation Water Demand in South Asia

Author:

Ahmad Qurat-ul-Ain,Biemans Hester,Moors Eddy,Shaheen Nuzba,Masih IlyasORCID

Abstract

Accurate (spatio-temporal) estimation of the crop yield relation to climate variables is essential in the densely populated Indus, Ganges, and Brahmaputra (IGB) river basins of South Asia for devising appropriate adaptation strategies to ensure regional food and water security. This study examines wheat (Triticum aestivum) and rice (Oryza sativa) crop yields’ sensitivity to primary climate variables (i.e., temperature and precipitation) and related changes in irrigation water demand at different spatial (i.e., province/state, districts and grid cell) and temporal (i.e., seasonal and crop growth phase) scales. To estimate the climate driven variations in crop yields, observed and modelled data applying the Lund-Potsdam-Jena managed Land (LPJmL) model are used for six selected study sites in the IGB river basins over the period 1981–2010. Our statistical analysis underscores the importance of impacts assessments at higher spatio-temporal scales. Our grid cell (aggregated over study sites) scale analysis shows that 27–72% variations in wheat and 17–55% in rice crop yields are linked with temperature variations at a significance level of p < 0.001. In the absence of irrigation application, up to 39% variations in wheat and up to 75% variations in rice crop yields are associated with precipitation changes in all study sites. Whereas, observed crop yields show weak correlations with temperature at a coarser resolution, i.e., up to 4% at province and up to 31% at district scales. Crop yields also showed stronger sensitivity to climate variables at higher temporal scale (i.e., vegetative and reproductive phases) having statistically strong negative relationship with temperature and positive with precipitation during the reproductive phase. Similarly, crop phase-specific variations in climate variables have considerable impacts (i.e., quantity and timing) on irrigation water demand. For improved crop water planning, we suggest integrated climate impact assessments at higher spatio-temporal scales which can help to devise appropriate adaptation strategies for sustaining future food demand.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference122 articles.

1. An Automated Approach to Map Winter Cropped Area of Smallholder Farms across Large Scales Using MODIS Imagery

2. Germplasm conservation of multipurpose trees and their role in agroforestry for sustainable agricultural production in Pakistan;Baig;Int. J. Agric. Biol.,2008

3. A Study of Land Utilization in Different Areas of India;Kalra;IJSRST,2018

4. Crop-specific seasonal estimates of irrigation-water demand in South Asia

5. Spatial Quantification of Groundwater Abstraction in the Irrigated Indus Basin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3