Three-Dimensional Numerical Investigation of Coupled Flow-Stress-Damage Failure Process in Heterogeneous Poroelastic Rocks

Author:

Chen Shikuo,Wei Chenhui,Yang Tianhong,Zhu Wancheng,Liu Honglei,Ranjith Pathegama

Abstract

The failure mechanism of heterogeneous rocks (geological materials), especially under hydraulic conditions, is important in geological engineering. The coupled mechanism of flow-stress-damage should be determined for the stability of rock mass engineering under triaxial stress states. Based on poroelasticity and damage theory, a three-dimensional coupled model of the flow-stress-damage failure process is studied, focusing mainly on the coupled characteristics of permeability evolution and damage in nonhomogeneous rocks. The influences of numerous mesoscale mechanical and hydraulic properties, including homogeneity, residual strength coefficient, loading rates, and strength criteria, on the macro mechanical response are analyzed. Results reveal that the stress sensitive factor and damage coefficient are key variables for controlling the progress of permeability evolution, and these can reflect the hydraulic properties under pre-peak and post-peak separately. Moreover, several experiments are conducted to evaluate the method in terms of permeability evolution and failure process and to verify the proposed two-stage permeability evolution model. This model can be used to illustrate the failure mechanics under hydraulic conditions and match different rock types. The relation of permeability with strain can also help confirm appropriate rock mass hydraulic parameters, thereby enhancing our understanding of the coupled failure mechanism in rock mass engineering.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3