Author:
Shao Jianli,Zhang Qi,Zhang Wenquan
Abstract
AbstractWater inrush originating from hidden faults in the coal seam floor is challenging to prevent due to their concealed nature. This paper develops a coupled stress–seepage–damage model for simulating rock fracture, implemented using the finite element method. The model is validated against compression-seepage tests on rock samples, capturing realistic dynamics of shear and tensile damage as well as permeability. The model is applied to the 27305 working face of a coal mine in Shandong Province, China, revealing the evolution of water inrush caused by a hidden fault. The results indicate that as the working face progresses, both the floor damage and the internal damage within the hidden fault escalate gradually. When mining reaches 80 m, the hidden fault has been activated internally, and the depth of floor damage reaches 13 m, which still has a certain distance from the hidden fault. At 100 m, the depth of the floor damage has stabilized, while the stress concentration at the hidden fault's tip increases, and it begins to expand if conditions for tensile damage are met. By the time mining reaches 110 m, the hidden fault has expanded 9.2 m in length and connected with the floor damage zone, forming a water inrush channel that links the aquifer to the working face, presenting a significant water inrush risk. This work provides an intuitive approach to understanding the evolution of water inrush from a hidden fault, aiding in the prevention of water inrush disasters in practical engineering applications.
Funder
PhD Research Startup Foundation of Shandong Technology and Business University
National Natural Science Foundation of China
Hong Kong RGC Postdoctoral Fellowship Scheme
PolyU Start-up Fund for RAPs under the Strategic Hiring Scheme
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献