Abstract
Organic acids, including acetic acid, are the metabolic products of many microorganisms. Acetic acid is a target product useful in the fermentation process. However, acetic acid has an inhibitory effect on microorganisms and limits fermentation. Thus, it would be beneficial to recover the acid from the culture medium. However, conventional recovery processes are expensive and environmentally unfriendly. Here, we report the use of a two-component hydrogel to adsorb dissociated and undissociated acetic acid from the culture medium. The Langmuir model revealed the maximum adsorption amount to be 44.8 mg acetic acid/g of dry gel at neutral pH value. The adsorption capacity was similar to that of an ion-exchange resin. In addition, the hydrogel maintained its adsorption capability in a culture medium comprising complex components, whereas the ion-exchange did not adsorb in this medium. The adsorbed acetic acid was readily desorbed using a solution containing a high salt concentration. Thus, the recovered acetic acid can be utilized for subsequent processes, and the gel-treated fermentation broth can be reused for the next round of fermentation. Use of this hydrogel may prove to be a more sustainable downstream process to recover biosynthesized acetic acid.
Funder
New Energy and Industrial Technology Development Organization
Subject
Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献