Surface-Free Multi-Stroke Trajectory Reconstruction and Word Recognition Using an IMU-Enhanced Digital Pen

Author:

Wehbi MohamadORCID,Luge Daniel,Hamann Tim,Barth JensORCID,Kaempf Peter,Zanca DarioORCID,Eskofier Bjoern M.ORCID

Abstract

Efficient handwriting trajectory reconstruction (TR) requires specific writing surfaces for detecting movements of digital pens. Although several motion-based solutions have been developed to remove the necessity of writing surfaces, most of them are based on classical sensor fusion methods limited, by sensor error accumulation over time, to tracing only single strokes. In this work, we present an approach to map the movements of an IMU-enhanced digital pen to relative displacement data. Training data is collected by means of a tablet. We propose several pre-processing and data-preparation methods to synchronize data between the pen and the tablet, which are of different sampling rates, and train a convolutional neural network (CNN) to reconstruct multiple strokes without the need of writing segmentation or post-processing correction of the predicted trajectory. The proposed system learns the relative displacement of the pen tip over time from the recorded raw sensor data, achieving a normalized error rate of 0.176 relative to unit-scaled tablet ground truth (GT) trajectory. To test the effectiveness of the approach, we train a neural network for character recognition from the reconstructed trajectories, which achieved a character error rate of 19.51%. Finally, a joint model is implemented that makes use of both the IMU data and the generated trajectories, which outperforms the sensor-only-based recognition approach by 0.75%.

Funder

Bavarian Ministry of Economic Affairs and Media, Energy and Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient multi-modal sensors feature fusion approach for handwritten characters recognition using Shapley values and deep autoencoder;Engineering Applications of Artificial Intelligence;2024-12

2. KIHT: Kaligo-Based Intelligent Handwriting Teacher;2024 Design, Automation & Test in Europe Conference & Exhibition (DATE);2024-03-25

3. Domain Adaptation for Handwriting Trajectory Reconstruction from IMU Sensors;Lecture Notes in Computer Science;2024

4. Towards the on-device Handwriting Trajectory Reconstruction of the Sensor Enhanced Pen;2023 IEEE 9th World Forum on Internet of Things (WF-IoT);2023-10-12

5. Learning Chinese Calligraphy in VR With Sponge-Enabled Haptic Feedback;Interacting with Computers;2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3