Stereo Visual Odometry Pose Correction through Unsupervised Deep Learning

Author:

Zhang Sumin,Lu Shouyi,He Rui,Bao Zhipeng

Abstract

Visual simultaneous localization and mapping (VSLAM) plays a vital role in the field of positioning and navigation. At the heart of VSLAM is visual odometry (VO), which uses continuous images to estimate the camera’s ego-motion. However, due to many assumptions of the classical VO system, robots can hardly operate in challenging environments. To solve this challenge, we combine the multiview geometry constraints of the classical stereo VO system with the robustness of deep learning to present an unsupervised pose correction network for the classical stereo VO system. The pose correction network regresses a pose correction that results in positioning error due to violation of modeling assumptions to make the classical stereo VO positioning more accurate. The pose correction network does not rely on the dataset with ground truth poses for training. The pose correction network also simultaneously generates a depth map and an explainability mask. Extensive experiments on the KITTI dataset show the pose correction network can significantly improve the positioning accuracy of the classical stereo VO system. Notably, the corrected classical stereo VO system’s average absolute trajectory error, average translational relative pose error, and average translational root-mean-square drift on a length of 100–800 m in the KITTI dataset is 13.77 cm, 0.038 m, and 1.08%, respectively. Therefore, the improved stereo VO system has almost reached the state of the art.

Funder

Research on Construction and Simulation Technology of Hardware in Loop Testing Scenario for Self-driving Electric Vehicle in China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3