Abstract
In real-life applications, electroencephalogram (EEG) signals for mental stress recognition require a conventional wearable device. This, in turn, requires an efficient number of EEG channels and an optimal feature set. This study aims to identify an optimal feature subset that can discriminate mental stress states while enhancing the overall classification performance. We extracted multi-domain features within the time domain, frequency domain, time-frequency domain, and network connectivity features to form a prominent feature vector space for stress. We then proposed a hybrid feature selection (FS) method using minimum redundancy maximum relevance with particle swarm optimization and support vector machines (mRMR-PSO-SVM) to select the optimal feature subset. The performance of the proposed method is evaluated and verified using four datasets, namely EDMSS, DEAP, SEED, and EDPMSC. To further consolidate, the effectiveness of the proposed method is compared with that of the state-of-the-art metaheuristic methods. The proposed model significantly reduced the features vector space by an average of 70% compared with the state-of-the-art methods while significantly increasing overall detection performance.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献