Sentiment Analysis-Based Automatic Stress and Emotion Recognition using Weighted Fused Fusion-Based Cascaded DTCN with Attention Mechanism from EEG Signal

Author:

Kathole Atul B.1ORCID,Lonare Savita1ORCID,Dharmale Gulbakshee2ORCID,Katti Jayashree2ORCID,Vhatkar Kapil1ORCID,Kimbahune Vinod V.1ORCID

Affiliation:

1. Computer Engineering, Dr. D. Y. Patil Institute of Technology, Pune, Pimpri, Maharashtra 411018, India

2. IT Department, Pimpri Chinchwad College of Engineering, Nigdi, Pimpri, Maharashtra 411044, India

Abstract

When loaded with difficulties in fulfilling daily requirements, a lot of people in today’s world experience an emotional pressure known as stress. Stress that lasts for a short duration of time has more advantages as they are good for mental health. But, the persistence of stress for a long duration of time may lead to serious health impacts in individuals, such as high blood pressure, cardiovascular disease, stroke and so on. Long-term stress, if unidentified and not treated, may also result in personality disorder, depression and anxiety. The initial detection of stress has become more important to prevent the health issues that arise due to stress. Detection of stress based on brain signals for analysing the emotion in humans leads to accurate detection outcomes. Using EEG-based detection systems and disease, disability and disorders can be identified from the brain by utilising the brain waves. Sentiment Analysis (SA) is helpful in identifying the emotions and mental stress in the human brain. So, a system to accurately and precisely detect depression in human based on their emotion through the utilisation of SA is of high necessity. The development of a reliable and precise Emotion and Stress Recognition (ESR) system in order to detect depression in real-time using deep learning techniques with the aid of Electroencephalography (EEG) signal-based SA is carried out in this paper. The essentials needed for performing stress and emotion detection are gathered initially from benchmark databases. Next, the pre-processing procedures, like the removal of artifacts from the gathered EEG signal, are carried out on the implemented model. The extraction of the spectral attributes is carried out from the pre-processed. The extracted spectral features are considered the first set of features. Then, with the aid of a Conditional Variational Autoencoder (CVA), the deep features are extracted from the pre-processed signals forming a second set of features. The weights are optimised using the Adaptive Egret Swarm Optimisation Algorithm (AESOA) so that the weighted fused features are obtained from these two sets of extracted features. Then, a Cascaded Deep Temporal Convolution Network with Attention Mechanism (CDTCN-AM) is used to recognise stress and emotion. The validation of the results from the developed stress and emotion recognition approach is carried out against traditional models in order to showcase the effectiveness of the suggested approach.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3