The Effect of Multi-Source DEM Accuracy on the Optimal Catchment Area Threshold

Author:

Wu Honggang,Liu Xueying,Li Qiang,Hu Xiujun,Li Hongbo

Abstract

This study attempts to investigate the relationship between the accuracy of different Digital Elevation Model (DEM) and fractal dimension D and to solve the problem of determining the optimal catchment area threshold in plain watersheds. In this study, the fractal dimensions of the Shuttle Radar Topographic Survey Digital Elevation Model (SRTM) V4.1 DEM, Hydrology 1K (HYDRO1K) DEM, and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM) with 90 m horizontal resolution and 30 m ASTER GDEM were calculated using the box dimension method, and the relationship between the horizontal resolution and accuracy of three data sources and fractal dimension D was studied. The optimal catchment area threshold in the study area was determined. The response of river network similarity and topographic features to DEM accuracy was explored, and the optimal catchment area threshold for the study area was verified. The result shows that, with the increase in the catchment area threshold, the fractal dimension D shows three stages of rapid decline, gentle fluctuation, and tend to 1. Compared with the horizontal resolution of DEM, the vertical accuracy has more influence on the fractal dimension D. The fractal dimension D accuracy increases with the increase in the vertical accuracy of DEM. The main order of influence of the three data sources is SRTM V4.1 DEM > ASTER GDEM > HYDRO1K DEM. The fractal dimension of the digital river network extracted by SRTM V4.1 DEM is 1.0245, the same as the fractal dimension of the actual river network. The optimal catchment area threshold of the study area is 4.05 km2, which has the highest coincidence with the actual river network. In summary, using the SRTM V4.1 DEM as the DEM data source is feasible to determine the optimal catchment area threshold in plain watersheds.

Funder

Fundamental Public Welfare Research Program of Zhejiang Province

Key R&D Program of Zhejiang

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference32 articles.

1. Impact factors of contribution area threshold in extracting drainage network for rivers in China;Sun;J. Hydraul. Eng.,2013

2. Study on relationship between box dimension and connectivity of river system in Huaihe River basin;Dou;J. Hydraul. Eng.,2019

3. Influence of Grid Sizes’ change on the fractal dimension of water systems;Wang;J. Irrig. Drain.,2017

4. Digital determination of catchment area threshold based on fractal dimension;Yang;Sci. Surv. Mapp.,2011

5. The extraction of drainage networks from digital elevation data;David;Comput. Vis. Graph. Image Process.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3