Simulation Study on the Electricity Data Streams Time Series Clustering

Author:

Gajowniczek KrzysztofORCID,Bator MarcinORCID,Ząbkowski Tomasz,Orłowski Arkadiusz,Loo Chu Kiong

Abstract

Currently, thanks to the rapid development of wireless sensor networks and network traffic monitoring, the data stream is gradually becoming one of the most popular data generating processes. The data stream is different from traditional static data. Cluster analysis is an important technology for data mining, which is why many researchers pay attention to grouping streaming data. In the literature, there are many data stream clustering techniques, unfortunately, very few of them try to solve the problem of clustering data streams coming from multiple sources. In this article, we present an algorithm with a tree structure for grouping data streams (in the form of a time series) that have similar properties and behaviors. We have evaluated our algorithm over real multivariate data streams generated by smart meter sensors—the Irish Commission for Energy Regulation data set. There were several measures used to analyze the various characteristics of a tree-like clustering structure (computer science perspective) and also measures that are important from a business standpoint. The proposed method was able to cluster the flows of data and has identified the customers with similar behavior during the analyzed period.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3