Whole Time Series Data Streams Clustering: Dynamic Profiling of the Electricity Consumption

Author:

Gajowniczek KrzysztofORCID,Bator Marcin,Ząbkowski Tomasz

Abstract

Data from smart grids are challenging to analyze due to their very large size, high dimensionality, skewness, sparsity, and number of seasonal fluctuations, including daily and weekly effects. With the data arriving in a sequential form the underlying distribution is subject to changes over the time intervals. Time series data streams have their own specifics in terms of the data processing and data analysis because, usually, it is not possible to process the whole data in memory as the large data volumes are generated fast so the processing and the analysis should be done incrementally using sliding windows. Despite the proposal of many clustering techniques applicable for grouping the observations of a single data stream, only a few of them are focused on splitting the whole data streams into the clusters. In this article we aim to explore individual characteristics of electricity usage and recommend the most suitable tariff to the customer so they can benefit from lower prices. This work investigates various algorithms (and their improvements) what allows us to formulate the clusters, in real time, based on smart meter data.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Individual Device Usage to Household Energy Consumption Profiling;Electronics;2024-06-14

2. Akan veri kümeleme probleminde ağaç veri yapılarının performans karşılaştırması;Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi;2023-08-21

3. Ensemble load pattern clustering method based on deep representation features;Fourth International Conference on Optoelectronic Science and Materials (ICOSM 2022);2023-03-06

4. Sensor Data Analytics: Challenges and Methods for Data-Intensive Applications;Entropy;2022-06-21

5. Robust Graph Factorization for Multivariate Electricity Consumption Series Clustering;Mathematical Problems in Engineering;2021-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3