An Optimal Design of an Electromagnetic Actuation System towards a Large Homogeneous Magnetic Field and Accessible Workspace for Magnetic Manipulation

Author:

Manamanchaiyaporn LaliphatORCID,Xu Tiantian,Wu Xinyu

Abstract

Untethered nano-/microrobots have been appealing to biomedical applications under magnetic guidance. Numerous actuation systems are specifically designed to generate either uniform or non-uniform fields which are unable to support all actuating mechanisms of magnetic robots. The size of their accessible space does not enable applications in life sciences (e.g., placing around human parts for tasks or an in vivo experiment in animals). Moreover, homogeneity of uniform magnetic fields is limited in a small region. Here, we propose an electromagnetic coil system that is optimally designed based on numerical simulation investigations to derestrict the mentioned constraints. The built-up system provides a large bore in which magnetic field generation by passing a 10 A current is strong enough for nano-/micromanipulation switchable between uniformity in a large-homogeneous region about 50-mm-wide along the x- and y-axes and 80-mm-wide along the z-axis, and with a non-uniformity of about 12 mT with 100 mT/m. It experimentally carries out potential and versatile controls to manipulate several commonly used microrobots that require a particular type of magnetic field to perform multi-DOF locomotion in diverse viscous environments. (e.g., helical propulsion by rotating magnetic field in the 3D-large workspace and in the complex network path, side-to-side sweeping-slip locomotion by oscillating fields, translation and rocking-slip locomotion by gradient-based fields). Besides, the system can be reproduced into any accessible space size regarding the square coil size to support diverse applications and guarantee the result in both uniformity of magnetic field in the large homogeneous region and a sufficiently strong gradient over the workspace.

Funder

National Natural Science Foundation of China (NSFC) for Young Scholar

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Soft Microrobots: Material, Fabrication, and Actuation;Advanced Intelligent Systems;2023-09-07

2. Effect of Magnetic Moments Towards Swimming Behavior and Performance of the Soft Milli-Robots;2023 9th International Conference on Control, Decision and Information Technologies (CoDIT);2023-07-03

3. On the Workspace of Electromagnetic Navigation Systems;IEEE Transactions on Robotics;2023-02

4. MAGNETIC-POWERED SOFT SWIMMING MILLI-ROBOT, 34-41.;Mechatronic Systems and Control;2023

5. Magnetic-Powered Swimming Soft-Milli Robot Towards Non-Invasive Applications;2022 8th International Conference on Control, Decision and Information Technologies (CoDIT);2022-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3