Electromechanical Energy-Based 3D-Controllable Motion of Small Matter toward Tiny Machines

Author:

Manamanchaiyaporn Laliphat1,Tang Xiuzhen1

Affiliation:

1. Center of Excellence in Design and Development, Research Unit in Multiscale Robotics, Department of Mechanical Engineering, Thammasat School of Engineering, Faculty of Engineering, Thammasat University, Bangkok 12130, Thailand

Abstract

Is it possible to remotely operate a tiny piece of matter or a less-than-one-centimeter machine to perform a medical task in life? Especially given that in the present technology, neither the mechanism nor battery is small enough to be set up inside the structure of such a tiny machine. Yet, if the powered matter is magnetically responsive, then a magnetic field, as one of the potential power sources, can be applied to power it promisingly. Herein, the concept of electromechanical energy conversion is utilized through a specific configuration consisting of eight solenoids arranged together as a nest. The device converts electrical energy into an electromagnetic field, and finally, into mechanical energy, respectively, resulting in magnetic manipulation. Since electric energy is supplied to the configuration, eight solenoids generate the controllable magnetic field in both direction and magnitude by means of the superposition technique. The device can magnetically navigate tiny motorless matter to release mechanical energy through the 3D-controllable motion to arbitrary positions effectively and physical interactions with the surrounding environment as if operating a tiny machine. The experimental results report the feasibility of the device to control the 6-DOF locomotion of small matter precisely. The contribution of the concept based on this work leads to a promising protocol to remotely power small machines, micro-engines, micro-propellers, micro-turbines, etc.

Funder

Thammasat University Research Fund

Thammasat Postdoctoral Fellowship

Thailand Science Research and Innovation Fundamental Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3