Georeferencing Oblique Aerial Wildfire Photographs: An Untapped Source of Fire Behaviour Data

Author:

Hart Henry,Perrakis Daniel D. B.ORCID,Taylor Stephen W.,Bone Christopher,Bozzini ClaudioORCID

Abstract

In this study, we investigate a novel application of the photogrammetric monoplotting technique for assessing wildfires. We demonstrate the use of the software program WSL Monoplotting Tool (MPT) to georeference operational oblique aerial wildfire photographs taken during airtanker response in the early stages of fire growth. We located the position of the fire front in georeferenced pairs of photos from five fires taken 31–118 min apart, and calculated the head fire spread distance and head fire rate of spread (HROS). Our example photos were taken 0.7 to 4.7 km from fire fronts, with camera angles of incidence from −19° to −50° to image centre. Using high quality images with detailed landscape features, it is possible to identify fire front positions with high precision; in our example data, the mean 3D error was 0.533 m and the maximum 3D error for individual fire runs was less than 3 m. This resulted in a maximum HROS error due to monoplotting of only ~0.5%. We then compared HROS estimates with predictions from the Canadian Fire Behavior Prediction System, with differences mainly attributed to model error or uncertainty in weather and fuel inputs. This method can be used to obtain observations to validate fire spread models or create new empirical relationships where databases of such wildfire photos exist. Our initial work suggests that monophotogrammetry can provide reproducible estimates of fire front position, spread distance and rate of spread with high accuracy, and could potentially be used to characterize other fire features such as flame and smoke plume dimensions and spotting.

Funder

Natural Resources Canada - Canadian Forest Service’s Emergency Management System

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Reference47 articles.

1. Wildfire Prediction to Inform Fire Management: Statistical Science Challenges

2. Development and structure of the Canadian Forest Fire Behavior Prediction System, Information Report ST-X-3,1992

3. Wildland fire risk research in Canada

4. Applications of simulation-based burn probability modelling: a review

5. Updates and Revisions to the 1992 Canadian Forest Fire Behavior Prediction System, GLC-X-10;Wotton,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fuel types misrepresent forest structure and composition in interior British Columbia: a way forward;Fire Ecology;2024-02-07

2. The time variable in the Territorial Digital Twin: The case of Guadalajara (Spain);VITRUVIO - International Journal of Architectural Technology and Sustainability;2023-12-21

3. Improved logistic models of crown fire probability in Canadian conifer forests;International Journal of Wildland Fire;2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3