Abstract
Background Crown fires are an ecologically necessary but hazardous process in conifer forests. Prediction of their behaviour in Canada has largely depended on the Canadian Forest Fire Behaviour Prediction System, in which fire weather indices drive primarily fixed fuel type models. The Crown Fire Initiation and Spread (CFIS) system presents a more flexible approach to predicting crown fire occurrence than fixed fuel type models. Aims Using a multi-decadal database of experimental fires carried out in conifer plots (1960–2019, n = 113), our aim was to develop updated models based on the CFIS system approach, fitting crown fire occurrence models to fire environment variables using logistic regression. Methods We tested alternative fuel moisture estimates and compared various model forms using repeated cross-validation. In two-storeyed stands, crown fire occurrence was defined as the involvement of lower canopy stratum fuels. Key results Final models based on wind speed, fuel strata gap, litter moisture and surface fuel consumption predicted crowning events correctly in up to 92% of cases in training data (89% in cross-validation). Conclusions and implications These new models offer improved accuracy and flexibility that will help users assess how competing environmental factors interact under different fuel treatments and wildfire scenarios.
Reference101 articles.
1. Conifer crown fuel modeling: current limits and potential for improvement.;Western Journal of Applied Forestry,2012
2. Fuel succession in a western hemlock/Douglas-fir forest.;Canadian Journal of Forest Research,1987
3. Basic principles of forest fuel reduction treatments.;Forest Ecology and Management,2005
4. The use of shaded fuelbreaks in landscape fire management.;Forest Ecology and Management,2000
5. Alexander ME (1988) Help with making crown fire hazard assessments. In ‘People and Homes in the Interior West: Proceedings of the Symposium and Workshop’, 6–8 October 1987, Missoula, MT, USA. General Technical Report INT-251. (Comps WC Fischer, SF Arno) pp. 147–156. (USDA Forest Service, Intermountain Research Station: Ogden, UT, USA)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献