Numerical Analysis of Smoke Behavior and Detection of Solid Combustible Fire Developed in Manned Exploration Module Based on Exploration Gravity

Author:

Hong Ter-Ki,Park Seul-Hyun

Abstract

A fire during manned space exploration can cause serious casualties and disrupt the mission if the initial response is delayed. Therefore, measurement technology that can detect fire in the early stage of ignition is important. There have been a number of works that investigate the smoke behaviors in microgravity as the foundation for a reliable method for sensing a fire during spaceflight. For space missions to the outer planets, however, a strategy of detecting smoke as an indicator of fire should be adjusted to cover the fire scenario that can be greatly affected by changes in gravity (microgravity, lunar, Mars, and Earth gravity). Therefore, as a preliminary study on fire detectors of the manned pressurized module, the present study examined the smoke particle behavior and detection characteristics with respect to changes in gravity using numerical analysis. In particular, the effects of the combination of buoyancy and ventilation flow on the smoke particle movement pattern was investigated to further improve the understanding of the fire detection characteristics of the smoke detector, assuming that a fire occurred in different gravity environments inside the pressurized module. To this end, we modeled the internal shape of Destiny and performed a series of numerical analysis using the Fire Dynamics Simulator (FDS). The findings of this study can provide basic data for the design of a fire detection system for manned space exploration modules.

Funder

Korea Aerospace Research Institute

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3