New Insight into the Effects of Gaseous CO2 on Spherically Symmetric Droplet Flames

Author:

Hong Ter-Ki1ORCID,Park Seul-Hyun2

Affiliation:

1. Department of Mechanical System & Automotive Engineering, Graduate School of Chosun University, 309 Pilmum-daero, Dong-gu, Gwangju 61452, Republic of Korea

2. Department of Mechanical Engineering, Chosun University, 309 Pilmum-daero, Dong-gu, Gwangju 61452, Republic of Korea

Abstract

This study investigated the effect of CO2 on the burning behavior and radiative properties of a single ethanol droplet flame in microgravity. Measurements of the droplet burning rate, the flame size and temperature, and the radiative emissions were performed, under microgravity conditions for ethanol droplets burning in N2 and CO2 environments, using the 1.5 s drop tower facilities at the Korea Maritime and Ocean University (KMOU). The non-monotonic sooting behaviors (caused by the elevated O2 concentrations) were found to have a significant influence on radiative heat losses in N2 environments, resulting in non-linear droplet burning behaviors with O2 concentrations. Due to the unique nature of CO2 in microgravity, which absorbs radiative energy from the flame and raises the temperatures of the surrounding gases, the CO2 environments suppressed the radiative heat losses from the flame, regardless of the non-monotonic sooting behavior observed at the higher O2 concentrations. These experimental findings highlight the complicated physics of CO2 gas radiation in microgravity, which has not been quantitatively explored.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3