A Partitioned and Heterogeneous Land-Use Simulation Model by Integrating CA and Markov Model

Author:

Wang Qihao1,Liu Dongya1,Gao Feiyao1,Zheng Xinqi1ORCID,Shang Yiqun1ORCID

Affiliation:

1. School of Information Engineering, China University of Geosciences, Beijing 100083, China

Abstract

Conversion rule is a key element for a cellular automata (CA) model, and it is a significant and challenging issue for both domestic and international experts. Traditional research regarding CA models often constructs a single conversion rule for the entire study area, without differentiating it on the basis of the unique growth features of each location. On the basis of this, a partitioned and heterogeneous land-use simulation model (PHLUS) is constructed by integrating a CA and Markov model: (1) A general conversion rule is constructed for the entire study area. By establishing a land development potential evaluation index system, the conversion rule is refined and differentiated; (2) By coupling a CA model with a Markov model, PHLUS can realize land-use simulation both in micro and macro scales. A simulation study is conducted for the Pearl River Delta region. The results show that: (1) By transforming the CA model rules to further distinguish zones, the accuracy is improved. Compared with the traditional CA-Markov model, the simulation accuracies for 2010 and 2020 are improved by 11.55% and 7.14%, respectively. For built-up land simulation, the PHLUS simulation errors for 2010 and 2020 are only 0.7% and 0.57%, respectively; and (2) Under land-use simulation for 2030, cultivated land and forest land will transfer to built-up land. The built-up land area will reach 10,919 km2. Guangzhou and Shenzhen have the greatest potential for land development, and the built-up land area for the two cities will reach 2727 km2.

Funder

The Third Xinjiang Scientific Expedition of the Key Research and Development Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3