Analyzing and Simulating the Influence of a Water Conveyance Project on Land Use Conditions in the Tarim River Region

Author:

Lin Jinyao1ORCID,Chen Qitong1

Affiliation:

1. School of Geography and Remote Sensing, Guangzhou University, Guangzhou 510006, China

Abstract

Arid and semi-arid areas are facing severe land degradation and desertification due to water scarcity. To alleviate these environmental issues, the Chinese government has launched a “water conveyance” project for environmental protection along the Tarim River. While previous studies have mainly focused on environmental conditions, the influence of these policies on land use conditions remains less explored. Therefore, this study first simulated the land use and land cover (LULC) changes in a major city (Korla) around the Tarim River. We found that the water conveyance routes have exerted notable influences on surrounding LULC changes. Next, we primarily focused on the LULC changes among different reaches of the Tarim River. We found that water and forest areas in the lower reaches have increased at the expense of a slight decrease in such areas in the upper and middle reaches, which suggests that the water conveyance policy may also have unintended consequences. These findings could attract the attention of decision makers in many other arid and semi-arid areas, and they could provide practical policy implications for other similar inter-basin water conveyance projects. The benefits and risks of these man-made projects should be carefully balanced.

Funder

Humanities and Social Sciences Research Program of the Ministry of Education of China

Guangdong Basic and Applied Basic Research Foundation

Guangdong Philosophy and Social Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3