Reservoir Characterization and Productivity Forecast Based on Knowledge Interaction Neural Network

Author:

Jiang Yunqi,Zhang Huaqing,Zhang KaiORCID,Wang Jian,Cui Shiti,Han Jianfa,Zhang Liming,Yao Jun

Abstract

The reservoir characterization aims to provide the analysis and quantification of the injection-production relationship, which is the fundamental work for production management. The connectivity between injectors and producers is dominated by geological properties, especially permeability. However, the permeability parameters are very heterogenous in oil reservoirs, and expensive to collect by well logging. The commercial simulators enable to get accurate simulation but require sufficient geological properties and consume excessive computation resources. In contrast, the data-driven models (physical models and machine learning models) are developed on the observed dynamic data, such as the rate and pressure data of the injectors and producers, constructing the connectivity relationship and forecasting the productivity by a series of nonlinear mappings or the control of specific physical principles. While, due to the “black box” feature of machine learning approaches, and the constraints and assumptions of physical models, the data-driven methods often face the challenges of poor interpretability and generalizability and the limited application scopes. To solve these issues, integrating the physical principle of the waterflooding process (material balance equation) with an artificial neural network (ANN), a knowledge interaction neural network (KINN) is proposed. KINN consists of three transparent modules with explicit physical significance, and different modules are joined together via the material balance equation and work cooperatively to approximate the waterflooding process. In addition, a gate function is proposed to distinguish the dominant flowing channels from weak connecting ones by their sparsity, and thus the inter-well connectivity can be indicated directly by the model parameters. Combining the strong nonlinear mapping ability with the guidance of physical knowledge, the interpretability of KINN is fully enhanced, and the prediction accuracy on the well productivity is improved. The effectiveness of KINN is proved by comparing its performance with the canonical ANN, on the inter-well connectivity analysis and productivity forecast tasks of three synthetic reservoir experiments. Meanwhile, the robustness of KINN is revealed by the sensitivity analysis on measurement noises and wells shut-in cases.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Adjacent Vertex Reducible Edge Labeling Algorithm for Fan Graphs;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

2. Research on Water Quality Image Classification Method based on Convolutional Neural Network;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

3. The Research and Implementation of the Automatic Briefing Generation System;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

4. Model Predictive Current Control of PMSM Based on a Novel Sliding Mode Disturbance Observer;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

5. Multi scale perceptual underwater image enhancement based on feature fusion network;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3