Data-Driven Niching Differential Evolution with Adaptive Parameters Control for History Matching and Uncertainty Quantification

Author:

Ma Xiaopeng1,Zhang Kai2,Zhang Liming1,Yao Chuanjin1,Yao Jun1,Wang Haochen1,Jian Wang1,Yan Yongfei1

Affiliation:

1. China University of Petroleum

2. China University of Petroleum (Corresponding author; email: zhangkai@upc.edu.cn)

Abstract

Summary History matching is a typical inverse problem that adjusts the uncertainty parameters of the reservoir numerical model with limited dynamic response data. In most situations, various parameter combinations can result in the same data fit, termed as nonuniqueness of inversion. It is desirable to find as many global or local optima as possible in a single optimization run, which may help to reveal the distribution of the uncertainty parameters in the posterior space, which is particularly important for robust optimization, risk analysis, and decision making in reservoir management. However, many factors, such as the nonlinearity of inversion problems and the time-consuming numerical simulation, limit the performance of most existing inverse algorithms. In this paper, we propose a novel data-driven niching differential evolution algorithm with adaptive parameter control for nonuniqueness of inversion, called DNDE-APC. On the basis of a differential evolution (DE) framework, the proposed algorithm integrates a clustering approach, niching technique, and local surrogate assistant method, which is designed to balance exploration and convergence in solving the multimodal inverse problems. Empirical studies on three benchmark problems demonstrate that the proposed algorithm is able to locate multiple solutions for complex multimodal problems on a limited computational budget. Integrated with convolutional variational autoencoder (CVAE) for parameterization of the high-dimensional uncertainty parameters, a history matching workflow is developed. The effectiveness of the proposed workflow is validated with heterogeneous waterflooding reservoir case studies. By analyzing the fitting and prediction of production data, history-matched realizations, the distribution of inversion parameters, and uncertainty quantization of forecasts, the results indicate that the new method can effectively tackle the nonuniqueness of inversion, and the prediction result is more robust.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 97 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3