GNSS-5G Hybrid Positioning Based on Joint Estimation of Multiple Signals in a Highly Dependable Spatio-Temporal Network

Author:

Liu Jingrong1ORCID,Deng Zhongliang1,Hu Enwen1,Huang Yunfei2,Deng Xiwen1ORCID,Zhang Zhichao1,Ding  Zhenke1,Liu Bingxun1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. China Telecom, Beijing 101399, China

Abstract

The Global Navigation Satellite System (GNSS) has been widely used in every area of our daily life to provide accurate Positioning, Navigation, and Timing (PNT) services. However, due to the multipatch effect and an obstructed view of the satellite, GNSS receivers are susceptible to large-ranging errors, which are particularly prevalent in urban areas where precise positioning is indispensable. The deployment of the high-spatial-density Fifth-Generation (5G) network makes it possible to provide a broad area with high-precision positioning service. Obviously, it promoting the deep integration of the GNSS system and the 5G mobile communication network and establishing a Highly Dependable Spatio-temporal Network (HDSN) have become an inevitable trend. The existing algorithm for the fusion of multiple signals has difficulty settling problems such as the fast fluctuation of available signal sources and the poor stability of multi-scale multi-type signal estimation in GNSS-5G hybrid networks. Here, we propose a Square Root Unscented Stable Filter (SRUSF) for GNSS and 5G joint positioning with a compact coupled filter group architecture in a highly dependable spatio-temporal network. A stabilized coefficient is added to guarantee positive covariance of the estimation error. The possibility of divergence of filtering results due to the variation in signal sources and the incomplete agreement between the system model and the actual situation are reduced. The simulation results show that the proposed SRUSF method substantially enhances the positioning accuracy and reliability compared with the other five joint estimation methods for multiple signals. This work will enable the terminal of mass users to provide timing and positioning services with unprecedented accuracy and dependability under the GNSS and 5 G-based spatio-temporal network’s architecture.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3