LJCD-Net: Cross-Domain Jamming Generalization Diagnostic Network Based on Deep Adversarial Transfer

Author:

Zhang Zhichao1ORCID,Deng Zhongliang1,Liu Jingrong1ORCID,Ding Zhenke1,Liu Bingxun1

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

Global Navigation Satellite Systems (GNSS) offer comprehensive position, navigation, and timing (PNT) estimates worldwide. Given the growing demand for reliable location awareness in both indoor and outdoor contexts, the advent of fifth-generation mobile communication technology (5G) has enabled expansive coverage and precise positioning services. However, the power received by the signal of interest (SOI) at terminals is notably low. This can lead to significant jamming, whether intentional or unintentional, which can adversely affect positioning receivers. The diagnosis of jamming types, such as classification, assists receivers in spectrum sensing and choosing effective mitigation strategies. Traditional jamming diagnosis methodologies predominantly depend on the expertise of classification experts, often demonstrating a lack of adaptability for diverse tasks. Recently, researchers have begun utilizing convolutional neural networks to re-conceptualize a jamming diagnosis as an image classification issue, thereby augmenting recognition performance. However, in real-world scenarios, the assumptions of independent and homogeneous distributions are frequently violated. This discrepancy between the source and target distributions frequently leads to subpar model performance on the test set or an inability to procure usable evaluation samples during training. In this paper, we introduce LJCD-Net, a deep adversarial migration-based cross-domain jamming generalization diagnostic network. LJCD-Net capitalizes on a fully labeled source domain and multiple unlabeled auxiliary domains to generate shared feature representations with generalization capabilities. Initially, our paper proposes an uncertainty-guided auxiliary domain labeling weighting strategy, which estimates the multi-domain sample uncertainty to re-weight the classification loss and specify the gradient optimization direction. Subsequently, from a probabilistic distribution standpoint, the spatial constraint imposed on the cross-domain global jamming time-frequency feature distribution facilitates the optimization of collaborative objectives. These objectives include minimizing both the source domain classification loss and auxiliary domain classification loss, as well as optimizing the inter-domain marginal probability and conditional probability distribution. Experimental results demonstrate that LJCD-Net enhances the recognition accuracy and confidence compared to five other diagnostic methods.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3