FCAE-AD: Full Convolutional Autoencoder Based on Attention Gate for Hyperspectral Anomaly Detection

Author:

Wang Xianghai12ORCID,Wang Yihan2ORCID,Mu Zhenhua1,Wang Ming2

Affiliation:

1. School of Geographical Sciences, Liaoning Normal University, Dalian 116029, China

2. School of Computer and Artificial Intelligence, Liaoning Normal University, Dalian 116029, China

Abstract

Recently, the methods based on the autoencoder reconstruction background have been applied to the area of hyperspectral image (HSI) anomaly detection (HSI-AD). However, the encoding mechanism of the autoencoder (AE) makes it possible to treat the anomaly and the background indistinguishably during reconstruction, which can result in a small number of anomalous pixels still being included in the acquired reconstruction background. In addition, the problem of redundant information in HSIs also exists in reconstruction errors. To this end, a fully convolutional AE hyperspectral anomaly detection (AD) network with an attention gate (AG) connection is proposed. First, the low-dimensional feature map as a product of the encoder and the fine feature map as a product of the corresponding decoding stage are simultaneously input into the AG module. The network context information is used to suppress the irrelevant regions in the input image and obtain the significant feature map. Then, the features from the AG and the deep features from upsampling are efficiently combined in the decoder stage based on the skip connection to gradually estimate the reconstructed background image. Finally, post-processing optimization based on guided filtering (GF) is carried out on the reconstruction error to eliminate the wrong anomalous pixels in the reconstruction error image and amplify the contrast between the anomaly and the background.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3