Abstract
Hyperspectral sensors are passive instruments that record reflected electromagnetic radiation in tens or hundreds of narrow and consecutive spectral bands. In the last two decades, the availability of hyperspectral data has sharply increased, propelling the development of a plethora of hyperspectral classification and target detection algorithms. Anomaly detection methods in hyperspectral images refer to a class of target detection methods that do not require any a-priori knowledge about a hyperspectral scene or target spectrum. They are unsupervised learning techniques that automatically discover rare features on hyperspectral images. This review paper is organized into two parts: part A provides a bibliographic analysis of hyperspectral image processing for anomaly detection in remote sensing applications. Development of the subject field is discussed, and key authors and journals are highlighted. In part B an overview of the topic is presented, starting from the mathematical framework for anomaly detection. The anomaly detection methods were generally categorized as techniques that implement structured or unstructured background models and then organized into appropriate sub-categories. Specific anomaly detection methods are presented with corresponding detection statistics, and their properties are discussed. This paper represents the first review regarding hyperspectral image processing for anomaly detection in remote sensing applications.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献