1. Clustering based background learning for hyperspectral anomaly detection;Aghili;Egypt. J. Remote Sens. Space Sci.,2023
2. An effective evaluation tool for hyperspectral target detection: 3D receiver operating characteristic curve analysis;Chang;IEEE Trans. Geosci. Remote Sens.,2020
3. A sparse autoencoder based hyperspectral anomaly detection algorihtm using residual of reconstruction error;Chang,2019
4. Nonnegative-constrained joint collaborative representation with union dictionary for hyperspectral anomaly detection;Chang;IEEE Trans. Geosci. Remote Sens.,2022
5. Hyperspectral anomaly detection with robust graph autoencoders;Fan;IEEE Trans. Geosci. Remote Sens.,2021