A Dual Multi-Head Contextual Attention Network for Hyperspectral Image Classification

Author:

Liang MiaomiaoORCID,He Qinghua,Yu XiangchunORCID,Wang Huai,Meng ZheORCID,Jiao Licheng

Abstract

To learn discriminative features, hyperspectral image (HSI), containing 3-D cube data, is a preferable means of capturing multi-head self-attention from both spatial and spectral domains if the burden in model optimization and computation is low. In this paper, we design a dual multi-head contextual self-attention (DMuCA) network for HSI classification with the fewest possible parameters and lower computation costs. To effectively capture rich contextual dependencies from both domains, we decouple the spatial and spectral contextual attention into two sub-blocks, SaMCA and SeMCA, where depth-wise convolution is employed to contextualize the input keys in the pure dimension. Thereafter, multi-head local attentions are implemented as group processing when the keys are alternately concatenated with the queries. In particular, in the SeMCA block, we group the spatial pixels by evenly sampling and create multi-head channel attention on each sampling set, to reduce the number of the training parameters and avoid the storage increase. In addition, the static contextual keys are fused with the dynamic attentional features in each block to strengthen the capacity of the model in data representation. Finally, the decoupled sub-blocks are weighted and summed together for 3-D attention perception of HSI. The DMuCA module is then plugged into a ResNet to perform HSI classification. Extensive experiments demonstrate that our proposed DMuCA achieves excellent results over several state-of-the-art attention mechanisms with the same backbone.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Plan in Shaanxi Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3