Abstract
Total phosphorus (TP) is a significant indicator of water eutrophication. As a typical macrophytic lake, Lake Baiyangdian is of considerable importance to the North China Plain’s ecosystem. However, the lake’s eutrophication is severe, threatening the local ecological environment. The correlation between chlorophyll and TP provides a mechanism for TP prediction. In view of the absorption and reflection characteristics of the chlorophyll concentrations in inland water, we propose a method to predict TP concentration in a macrophytic lake with spectral characteristics dominated by chlorophyll. In this study, water spectra noise is removed by discrete wavelet transform (DWT), and chlorophyll-sensitive bands are selected by gray correlation analysis (GRA). To verify the effectiveness of the chlorophyll-sensitive bands for TP concentration prediction, three different machine learning (ML) algorithms were used to build prediction models, including partial least squares (PLS), random forest (RF) and adaptive boosting (AdaBoost). The results indicate that the PLS model performs well in terms of TP concentration prediction, with the least time consumption: the coefficient of determination (R2) and root mean square error (RMSE) are 0.821 and 0.028 mg/L in the training dataset, and 0.741 and 0.029 mg/L in the testing dataset, respectively. Compared with the empirical model, the method proposed herein considers the correlation between chlorophyll and TP concentration, as well as a higher accuracy. The results indicate that chlorophyll-sensitive bands are effective for predicting TP concentration.
Funder
National Natural Science Foundation of China
Innovation Team
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献