Prediction of Total Phosphorus Concentration in Macrophytic Lakes Using Chlorophyll-Sensitive Bands: A Case Study of Lake Baiyangdian

Author:

Zhang Linshan,Zhang LifuORCID,Cen Yi,Wang SaORCID,Zhang Yu,Huang Yao,Sultan Mubbashra,Tong Qingxi

Abstract

Total phosphorus (TP) is a significant indicator of water eutrophication. As a typical macrophytic lake, Lake Baiyangdian is of considerable importance to the North China Plain’s ecosystem. However, the lake’s eutrophication is severe, threatening the local ecological environment. The correlation between chlorophyll and TP provides a mechanism for TP prediction. In view of the absorption and reflection characteristics of the chlorophyll concentrations in inland water, we propose a method to predict TP concentration in a macrophytic lake with spectral characteristics dominated by chlorophyll. In this study, water spectra noise is removed by discrete wavelet transform (DWT), and chlorophyll-sensitive bands are selected by gray correlation analysis (GRA). To verify the effectiveness of the chlorophyll-sensitive bands for TP concentration prediction, three different machine learning (ML) algorithms were used to build prediction models, including partial least squares (PLS), random forest (RF) and adaptive boosting (AdaBoost). The results indicate that the PLS model performs well in terms of TP concentration prediction, with the least time consumption: the coefficient of determination (R2) and root mean square error (RMSE) are 0.821 and 0.028 mg/L in the training dataset, and 0.741 and 0.029 mg/L in the testing dataset, respectively. Compared with the empirical model, the method proposed herein considers the correlation between chlorophyll and TP concentration, as well as a higher accuracy. The results indicate that chlorophyll-sensitive bands are effective for predicting TP concentration.

Funder

National Natural Science Foundation of China

Innovation Team

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3