Spatial–Temporal Wetland Landcover Changes of Poyang Lake Derived from Landsat and HJ-1A/B Data in the Dry Season from 1973–2019

Author:

Wang SaORCID,Zhang LifuORCID,Zhang Hongming,Han Xingxing,Zhang Linshan

Abstract

As China’s largest freshwater lake and an important wintering ground for white cranes in Asia, the Poyang Lake wetland has unique ecological value. However, wetland cover types have changed dynamically and have attracted the attention of society and researchers over the past few decades. To obtain detailed knowledge and understanding of the long-term landcover dynamics of Poyang Lake and the associated driving forces, Landsat and HJ-1A/B images (31 images) were used to acquire classification and frequency maps of Poyang Lake in the dry season from 1973–2019 based on the random forest (RF) algorithm. In addition, the driving forces were discussed according to the Geodetector model. The results showed that the coverage of water and mudflat showed opposite trends from 1987–2019. Water and vegetation exhibited a significant decreasing trend from 1981–2003 and from 1996–2004 (p < 0.01), respectively. A phenomenon of vegetation expanding from west to east was found, and the expansion areas were mainly concentrated in the central zone of Poyang Lake, while vegetation in the northern mountainous area of Songmen (region 1) and eastern Songmen Mountain (region 2), showed a significantly expanded trend (R2 > 0.6, p < 0.01) during the five-decade period. The year-long dominant distribution of water occurred mainly in the two deltas formed by the Raohe and Tongjin rivers and the Fuhe and Xinjiang rivers, with deep water. In the 1973–2003 and 2003–2019 periods, a total of 313.522 km2 of water turned into swamp and mudflat and 478.453 km2 of swamp and mudflat transitioned into vegetation, respectively. Elevation and temperature appeared to be the main factors affecting the regional wetland evolution in the dry season and should be considered in the management of Poyang Lake. The findings of this work provide detailed information for spatial–temporal landcover changes of Poyang Lake, which could help policymakers to formulate scientific and appropriate policies and achieve restoration of the Poyang Lake wetland.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3