Wetland Evolution and Driving Force Analysis in the Qingtongxia Reservoir Area

Author:

Li Qianwen123,Jin Tiantian23,Yang Jing1,Zhao Qingxu1,Peng Qidong23,Lin Junqiang23,Zhang Di23

Affiliation:

1. Huaneng Tibet Hydropower Safety Engineering Technology Research Center, Chengdu 610093, China

2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China

3. Key Laboratory of River Basin Digital Twinning of Ministry of Water Resources, Beijing 100038, China

Abstract

In recent years, the combination of river disruption and irrational human activities has caused serious damage to wetlands. Based on long-time-series remote-sensing images, this study applied the land use transfer matrix and landscape index method to investigate the dynamic evolution and driving forces of the Qingtongxia wetland in the upper reaches of the Yellow River from 1999 to 2020. The results show that the land use types of Qingtongxia wetland changed insignificantly from 1999 to 2020, with the area of water and grassland decreasing and the area of reed wetland, beach, farmland and forest increasing. The spatial changes in the watershed changed the distribution of other land uses within the wetland, with the watershed concentrating in a southwest–northeast direction and shrinking in the southwestern part of the wetland area between years. From 1999 to 2011, the wetlands were restored, the landscape became less fragmented and simpler in shape and the dominant species developed significantly. From 2010 to 2020, the wetlands were disturbed and, as a new tourist destination, the planning and renovation work increased fragmentation and the complexity of the patches. The complexity of the patch shape increased, and, at the same time, with the implementation of various conservation measures, the development of the dominant species within recovered. The drivers of change in the different land use areas within the wetlands of the Qingtongxia reservoir are dominated by flow, and the drivers of the evolution of landscape patterns within the wetlands are closely related to the population and gross regional product, in addition to being influenced by flow. In recent years, increased fragmentation has been the main reason for the decline in bird habitat quality. Maintaining bird diversity in the wetlands of the Qingtongxia reservoir can be based on rational planning of the proportion of different land uses within the wetlands, reducing landscape fragmentation by limiting human activities in the corresponding areas, as well as appropriate flow control measures. This study provides some reference for biodiversity conservation within wetlands.

Funder

National Key R&D Program of China

Key R&D Program of the China Huaneng Group Co., Ltd

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3