ACE R-CNN: An Attention Complementary and Edge Detection-Based Instance Segmentation Algorithm for Individual Tree Species Identification Using UAV RGB Images and LiDAR Data

Author:

Li Yingbo,Chai Guoqi,Wang Yueting,Lei Lingting,Zhang XiaoliORCID

Abstract

Accurate and automatic identification of tree species information at the individual tree scale is of great significance for fine-scale investigation and management of forest resources and scientific assessment of forest ecosystems. Despite the fact that numerous studies have been conducted on the delineation of individual tree crown and species classification using drone high-resolution red, green and blue (RGB) images, and Light Detection and Ranging (LiDAR) data, performing the above tasks simultaneously has rarely been explored, especially in complex forest environments. In this study, we improve upon the state of the Mask region-based convolution neural network (Mask R-CNN) with our proposed attention complementary network (ACNet) and edge detection R-CNN (ACE R-CNN) for individual tree species identification in high-density and complex forest environments. First, we propose ACNet as the feature extraction backbone network to fuse the weighted features extracted from RGB images and canopy height model (CHM) data through an attention complementary module, which is able to selectively fuse weighted features extracted from RGB and CHM data at different scales, and enables the network to focus on more effective information. Second, edge loss is added to the loss function to improve the edge accuracy of the segmentation, which is calculated through the edge detection filter introduced in the Mask branch of Mask R-CNN. We demonstrate the performance of ACE R-CNN for individual tree species identification in three experimental areas of different tree species in southern China with precision (P), recall (R), F1-score, and average precision (AP) above 0.9. Our proposed ACNet–the backbone network for feature extraction–has better performance in individual tree species identification compared with the ResNet50-FPN (feature pyramid network). The addition of the edge loss obtained by the Sobel filter further improves the identification accuracy of individual tree species and accelerates the convergence speed of the model training. This work demonstrates the improved performance of ACE R-CNN for individual tree species identification and provides a new solution for tree-level species identification in complex forest environments, which can support carbon stock estimation and biodiversity assessment.

Funder

National Natural Science Foundation of China

National Ministry of Science and Technology Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3