Classification of Tree Species in Different Seasons and Regions Based on Leaf Hyperspectral Images

Author:

Yang RongchaoORCID,Kan Jiangming

Abstract

This paper aims to establish a tree species identification model suitable for different seasons and regions based on leaf hyperspectral images, and to mine a more effective hyperspectral identification algorithm. Firstly, the reflectance spectra of leaves in different seasons and regions were analyzed. Then, to solve the problem that 0-element in sparse random (SR) coding matrices affects the classification performance of error-correcting output codes (ECOC), two versions of supervision-mechanism-based ECOC algorithms, namely SM-ECOC-V1 and SM-ECOC-V2, were proposed in this paper. In addition, the performance of the proposed algorithms was compared with that of six traditional algorithms based on all bands and feature bands. The experiment results show that seasonal and regional changes have an effect on the reflectance spectra of leaves, especially in the near-infrared region of 760–1000 nm. When the spectral information of different seasons and different regions is added into the identification model, tree species can be effectively classified. SM-ECOC-V2 achieves the best classification performance based on both all bands and feature bands. Furthermore, both SM-ECOC-V1 and SM-ECOC-V2 outperform the ECOC method under SR coding strategy, indicating the proposed methods can effectively avoid the influence of 0-element in SR coding matrix on classification performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference35 articles.

1. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging

2. Overview of hyperspectral remote sensing technology;Zhang;Spacecr. Recovery Remote Sens.,2018

3. Technology of hyperspectral remote sensing (HRS) and its application to forest resources monitoring;Zhao;For. Invent. Plan.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3