Modeling and Analysis of RFI Impacts on Imaging between Geosynchronous SAR and Low Earth Orbit SAR

Author:

Dong XichaoORCID,Sui Yi,Li YuanhaoORCID,Chen ZhiyangORCID,Hu ChengORCID

Abstract

Due to the short revisit time and large coverage of Geosynchronous synthetic aperture radars (GEO SARs) and the increasing number of low earth orbit synthetic aperture radar (LEO SAR) constellations, radio frequency interference (RFI) between GEO SARs and LEO SARs may occur, deteriorating the quality of SAR images. Traditional methods only simplify RFI to noise-like interference without considering the signal characteristics. In this paper, to accurately evaluate the impacts of GEO-to-LEO RFI and LEO-to-GEO RFI on imaging quantitatively, an RFI-impact quantitative analysis model is established. Taking account of the chirp signal form of SAR systems, the RFI power and image Signal-to-Interference-plus-Noise Ratio (SINR) are theoretically deduced and validated by numerical experiments. Based on the proposed method, the SAR image quality under different system parameters and bistatic configurations is estimated, and the probability of different configurations is also given. The results show that specular bistatic scattering RFI between GEO SARs and LEO SARs has serious effects on imaging, and the probability can approach 2% for certain orbital parameters and will become higher as LEO SAR constellations increase in the future, implying the necessity to suppress the RFI between the GEO SAR and the LEO SAR system.

Funder

National Natural Science Foundation of China under Grant

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3