Focus Improvement of Spaceborne-Missile Bistatic SAR Data Using the Modified NLCS Algorithm Based on the Method of Series Reversion

Author:

Xi Zirui,Duan Chongdi,Zuo Weihua,Li Caipin,Huo Tonglong,Li Dongtao,Wen He

Abstract

The speed and direction of a missile shifts sharply in the dive phase, making the azimuth frequency modulation (FM) rate change with the azimuthal position, leading to azimuth ambiguities and image distortion. To solve this problem, a modified nonlinear chirp scaling (NLCS) algorithm was adopted to compensate for the azimuth FM rate. First, the geometric configuration and echo signal model of the spaceborne missile bistatic synthetic aperture radar (SAR) were built, and then the Doppler frequency correction was performed, and the 2-D spectrum of the signal was derived by the method of series reversion. Next, range migration correction and range compression were finished in the 2-D frequency domain. Following this, a modified NLCS algorithm was proposed to solve the space variance of Doppler phase problem. After compensating for the azimuth FM rate, the azimuth compression focusing was completed and the imaging result was obtained. Finally, by comparing the calculation amount, imaging effect, and performance index with the traditional NLCS algorithm, it can be concluded that the algorithm reduced the calculation amount by 1.0128 × 108 floating point operations per second (FLOPs) compared with the traditional NLCS algorithm, and the azimuth focusing effect of the edge point was greatly improved. Its resolution, peak sidelobe ratio (PSLR), and integrated sidelobe ratio (ISLR) were improved by 0.87 m, 3.32 dB, and 1.79 dB, respectively, which proved the effectiveness and feasibility of this method.

Funder

the National Project Funding

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference36 articles.

1. Cruz, H., Véstias, M., Monteiro, J., Neto, H., and Duarte, R.P. (2022). A Review of Synthetic-Aperture Radar Image Formation Algorithms and Implementations: A Computational Perspective. Remote Sens., 14.

2. Cui, C., Dong, X., Chen, Z., Hu, C., and Tian, W. (2022). A Long-Time Coherent Integration STAP for GEO Spaceborne-Airborne Bistatic SAR. Remote Sens., 14.

3. Li, Q., Zhang, Y., Wang, Y., Bai, Y., Zhang, Y., and Li, X. (2022). Numerical Simulation of SAR Image for Sea Surface. Remote Sens., 14.

4. BeiDou-based passive multistatic radar maritime moving target detection technique via space–time hybrid integration processing;IEEE Trans. Geosci. Remote Sens.,2021

5. Geosynchronous spaceborne–airborne bistatic SAR data focusing using a novel range model based on one-stationary equivalence;IEEE Trans. Geosci. Remote Sens.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3