Mapping the Levels of Soil Salination and Alkalization by Integrating Machining Learning Methods and Soil-Forming Factors

Author:

Yan Yang,Kayem Kader,Hao Ye,Shi ZhouORCID,Zhang Chao,Peng Jie,Liu Weiyang,Zuo Qiang,Ji WenjunORCID,Li Baoguo

Abstract

Accurate updating of soil salination and alkalization maps based on remote sensing images and machining learning methods plays an essential role in food security, biodiversity, and desertification. However, there is still a lack of research on using machine learning, especially one-dimensional convolutional neural networks (CNN)s, and soil-forming factors to classify the salinization and alkalization degree. As a case study, the study estimated the soil salination and alkalization by Random forests (RF) and CNN based on the 88 observations and 16 environmental covariates in Da’an city, China. The results show that: the RF model (accuracy = 0.67, precision = 0.67 for soil salination) with the synthetic minority oversampling technique performed better than CNN. Salinity and vegetation spectral indexes played the most crucial roles in soil salinization and alkalinization estimation in Songnen Plain. The spatial distribution derived from the RF model shows that from the 1980s to 2021, soil salinization and alkalization areas increased at an annual rate of 1.40% and 0.86%, respectively, and the size of very high salinization and alkalization was expanding. The degree and change rate of soil salinization and alkalization under various land-use types followed mash > salinate soil > grassland > dry land and forest. This study provides a reference for rapid mapping, evaluating, and managing soil salinization and alkalization in arid areas.

Funder

the Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, P.R. China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3