Evaluation of Water Hammer for Seawater Treatment System in Offshore Floating Production Unit

Author:

Park Jun Sung,Nguyen Quang KhaiORCID,Lee Gang NamORCID,Jung Kwang Hyo,Park HyunORCID,Suh Sung Bu

Abstract

Water hammer can result in the rupture of pipes, and significant damage to pipe supports is inevitable during the operation of an offshore plant. In this study, the dynamic behaviors of the water hammer caused by closing valves and starting pumps for the seawater treatment system were evaluated by using the 1D numerical simulation model based on the method of characteristics. Before conducting an analysis of a complex piping network, the 1D numerical simulation tools were validated by a comparison between the numerical results and the results from both static and transient experiments that have been conducted in other studies. For the case study, the effects of valve flow characteristics and valve closing time on surge pressure were investigated, and the equal percentage butterfly valve was recommended in order to reduce the surge pressure with a shorter valve closure time and lower weight compared to other valve types.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Flow field torque analysis and valve plate optimization of butterfly anti-stick bleed valve;Flow Measurement and Instrumentation;2024-12

2. Code communication method for water injection wells based on transient flow waves in tubular strings;Petroleum Science and Technology;2024-05-20

3. Comparative Analysis of the Performance Characteristics of Butterfly and Pinch Valves;Processes;2023-06-24

4. Experimental study on pressure characteristics and flow coefficient of butterfly valve;International Journal of Naval Architecture and Ocean Engineering;2023

5. CFD analysis of a butterfly valve to optimize its design;2ND INTERNATIONAL CONFERENCE ON APPLIED RESEARCH AND ENGINEERING (ICARAE2022);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3