Comparative Analysis of the Performance Characteristics of Butterfly and Pinch Valves

Author:

Alkhulaifi Khalid1,Alharbi Ali1,Alardhi Mohsen2,Alrajhi Jasem2,Almutairi Hamad H.1

Affiliation:

1. Mechanical Power and Refrigeration Department, College of Technological Studies, PAAET, Kuwait City 70654, Kuwait

2. Automotive and Marine Department, College of Technological Studies, PAAET, Kuwait City 70654, Kuwait

Abstract

Valves are important components in controlling the amount of fluid going to devices. One of these types is the butterfly valve (BFV) that adjusts the amount of flow by rotating the valve disk by means of its shafts which is usually located in the middle of the flow. Despite its common usage in various applications, the BFV is known to cause a high-pressure drop. Conversely, the pinch valve is another type of flow control device that uses a pinching mechanism to open and close the inner tube by pinching at different degrees. The absence of flow-controlling mechanisms in the flow path, such as the valve disk and its shaft, contribute to the minimal pressure drop in pinch valves. The high-pressure drop in BFVs and the minimal pressure drop in pinch valve flow make it worthwhile to investigate and compare their flow at all opening positions of the two valves. Therefore, this work numerically explores the potential of using the pinch valve as an alternative to the BFV in terms of its ability to attain a lower pressure loss, hence better flow rate. The influence of various BFV parameters such as shaft diameter, valve thickness, and valve disk edge were examined. The performance characteristics of both valves were obtained using CFD models formed on the SolidWorks program. This CFD model solves the differential equations using the finite element method. Moreover, a mathematical model to determine the area of the pinch valve at various pinching degrees was developed and compared with the results obtained from other mathematical models and CFD. It was shown that using a flat 1 mm valve disk thickness with round edges resulted in a 7.5% increase in mass flow rate compared to standard BFVs. On the other hand, using the pinch valve resulted in over a 700% mass flow rate compared to the BFV at a 25% opening position and a 49% increase in flow rate at a 75% opening position. Thus, the pinch valve has the potential to replace the BFV due to its better flow characteristics in any application.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3