High Electron Mobility in Si-Doped Two-Dimensional β-Ga2O3 Tuned Using Biaxial Strain

Author:

Zeng Hui12ORCID,Ma Chao2,Wu Meng3

Affiliation:

1. College of Science, Hunan University of Science and Engineering, Yongzhou 425199, China

2. College of Materials Science and Engineering, Hunan University, Changsha 410082, China

3. Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China

Abstract

Two-dimensional (2D) semiconductors have attracted much attention regarding their use in flexible electronic and optoelectronic devices, but the inherent poor electron mobility in conventional 2D materials severely restricts their applications. Using first-principles calculations in conjunction with Boltzmann transport theory, we systematically investigated the Si-doped 2D β-Ga2O3 structure mediated by biaxial strain, where the structural stabilities were determined by formation energy, phonon spectrum, and ab initio molecular dynamic simulation. Initially, the band gap values of Si-doped 2D β-Ga2O3 increased slightly, followed by a rapid decrease from 2.46 eV to 1.38 eV accompanied by strain modulations from −8% compressive to +8% tensile, which can be ascribed to the bigger energy elevation of the σ* anti-bonding in the conduction band minimum than that of the π bonding in the valence band maximum. Additionally, band structure calculations resolved a direct-to-indirect transition under the tensile strains. Furthermore, a significantly high electron mobility up to 4911.18 cm2 V−1 s−1 was discovered in Si-doped 2D β-Ga2O3 as the biaxial tensile strain approached 8%, which originated mainly from the decreased quantum confinement effect on the surface. The electrical conductivity was elevated with the increase in tensile strain and the enhancement of temperature from 300 K to 800 K. Our studies demonstrate the tunable electron mobilities and band structures of Si-doped 2D β-Ga2O3 using biaxial strain and shed light on its great potential in nanoscale electronics.

Funder

Natural Science Foundation of Hunan Province of China

Education Department of Hunan Province of China

Natural Science Foundation of Fujian Province of China

Fundamental Research Funds for Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3