Picosecond Bessel Beam Fabricated Pure, Gold-Coated Silver Nanostructures for Trace-Level Sensing of Multiple Explosives and Hazardous Molecules

Author:

Banerjee Dipanjan,Akkanaboina Mangababu,Ghosh Subhasree,Soma Venugopal RaoORCID

Abstract

A zeroth-order, non-diffracting Bessel beam, generated by picosecond laser pulses (1064 nm, 10 Hz, 30 ps) through an axicon, was utilized to perform pulse energy-dependent (12 mJ, 16 mJ, 20 mJ, 24 mJ) laser ablation of silver (Ag) substrates in air. The fabrication resulted in finger-like Ag nanostructures (NSs) in the sub-200 nm domain and obtained structures were characterized using the FESEM and AFM techniques. Subsequently, we employed those Ag NSs in surface-enhanced Raman spectroscopy (SERS) studies achieving promising sensing results towards trace-level detection of six different hazardous materials (explosive molecules of picric acid (PA) and ammonium nitrate (AN), a pesticide thiram (TH) and the dye molecules of Methylene Blue (MB), Malachite Green (MG), and Nile Blue (NB)) along with a biomolecule (hen egg white lysozyme (HEWL)). The remarkably superior plasmonic behaviour exhibited by the AgNS corresponding to 16 mJ pulse ablation energy was further explored. To accomplish a real-time application-oriented understanding, time-dependent studies were performed utilizing the AgNS prepared with 16 mJ and TH molecule by collecting the SERS data periodically for up to 120 days. The coated AgNSs were prepared with optimized gold (Au) deposition, accomplishing a much lower trace detection in the case of thiram (~50 pM compared to ~50 nM achieved prior to the coating) as well as superior EF up to ~108 (~106 before Au coating). Additionally, these substrates have demonstrated superior stability compared to those obtained before Au coating.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3