Underwater persistent bubble-assisted femtosecond laser ablation for hierarchical micro/nanostructuring

Author:

Zhang DongshiORCID,Ranjan Bikas,Tanaka Takuo,Sugioka KojiORCID

Abstract

Abstract In this study, we demonstrate a technique termed underwater persistent bubble assisted femtosecond laser ablation in liquids (UPB-fs-LAL) that can greatly expand the boundaries of surface micro/nanostructuring through laser ablation because of its capability to create concentric circular macrostructures with millimeter-scale tails on silicon substrates. Long-tailed macrostructures are composed of layered fan-shaped (central angles of 45°–141°) hierarchical micro/nanostructures, which are produced by fan-shaped beams refracted at the mobile bubble interface (≥50° light tilt, referred to as the vertical incident direction) during UPB-fs-LAL line-by-line scanning. Marangoni flow generated during UPB-fs-LAL induces bubble movements. Fast scanning (e.g. 1 mm s−1) allows a long bubble movement (as long as 2 mm), while slow scanning (e.g. 0.1 mm s−1) prevents bubble movements. When persistent bubbles grow considerably (e.g. hundreds of microns in diameter) due to incubation effects, they become sticky and can cause both gas-phase and liquid-phase laser ablation in the central and peripheral regions of the persistent bubbles. This generates low/high/ultrahigh spatial frequency laser-induced periodic surface structures (LSFLs/HSFLs/UHSFLs) with periods of 550–900, 100–200, 40–100 nm, which produce complex hierarchical surface structures. A period of 40 nm, less than 1/25th of the laser wavelength (1030 nm), is the finest laser-induced periodic surface structures (LIPSS) ever created on silicon. The NIR-MIR reflectance/transmittance of fan-shaped hierarchical structures obtained by UPB-fs-LAL at a small line interval (5 μm versus 10 μm) is extremely low, due to both their extremely high light trapping capacity and absorbance characteristics, which are results of the structures’ additional layers and much finer HSFLs. In the absence of persistent bubbles, only grooves covered with HSFLs with periods larger than 100 nm are produced, illustrating the unique attenuation abilities of laser properties (e.g. repetition rate, energy, incident angle, etc) by persistent bubbles with different curvatures. This research represents a straightforward and cost-effective approach to diversifying the achievable hierarchical micro/nanostructures for a multitude of applications.

Publisher

IOP Publishing

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3