Effect of Spatial and Spectral Scaling on Joint Characterization of the Spectral Mixture Residual: Comparative Analysis of AVIRIS and WorldView-3 SWIR for Geologic Mapping in Anza-Borrego Desert State Park

Author:

Price Jeffrey1,Sousa Daniel1ORCID,Sousa Francis J.2ORCID

Affiliation:

1. Department of Geography, San Diego State University, San Diego, CA 92182, USA

2. College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA

Abstract

A geologic map is both a visual depiction of the lithologies and structures occurring at the Earth’s surface and a representation of a conceptual model for the geologic history in a region. The work needed to capture such multifaced information in an accurate geologic map is time consuming. Remote sensing can complement traditional primary field observations, geochemistry, chronometry, and subsurface geophysical data in providing useful information to assist with the geologic mapping process. Two novel sources of remote sensing data are particularly relevant for geologic mapping applications: decameter-resolution imaging spectroscopy (spectroscopic imaging) and meter-resolution multispectral shortwave infrared (SWIR) imaging. Decameter spectroscopic imagery can capture important mineral absorptions but is frequently unable to spatially resolve important geologic features. Meter-resolution multispectral SWIR images are better able to resolve fine spatial features but offer reduced spectral information. Such disparate but complementary datasets can be challenging to integrate into the geologic mapping process. Here, we conduct a comparative analysis of spatial and spectral scaling for two such datasets: one Airborne Visible/Infrared Imaging Spectrometer—Classic (AVIRIS-classic) flightline, and one WorldView-3 (WV3) scene, for a geologically complex landscape in Anza-Borrego Desert State Park, California. To do so, we use a two-stage framework that synthesizes recent advances in the spectral mixture residual and joint characterization. The mixture residual uses the wavelength-explicit misfit of a linear spectral mixture model to capture low variance spectral signals. Joint characterization utilizes nonlinear dimensionality reduction (manifold learning) to visualize spectral feature space topology and identify clusters of statistically similar spectra. For this study area, the spectral mixture residual clearly reveals greater spectral dimensionality in AVIRIS than WorldView (99% of variance in 39 versus 5 residual dimensions). Additionally, joint characterization shows more complex spectral feature space topology for AVIRIS than WorldView, revealing information useful to the geologic mapping process in the form of mineralogical variability both within and among mapped geologic units. These results illustrate the potential of recent and planned imaging spectroscopy missions to complement high-resolution multispectral imagery—along with field and lab observations—in planning, collecting, and interpreting the results from geologic field work.

Funder

United States Department of Agriculture

NASA Land-Cover/Land Use Change

National Aeronautics and Space Administration

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3